Go要点新解(二)map小解(go核心技能)
myzbx 2025-06-04 00:03 36 浏览
回顾前景
在上一节中,咱们留了一个代码:
func main() {
buffer := []byte("test")
stringData := reflect.StringHeader{
Data: uintptr(unsafe.Pointer(&buffer[0])),
Len: len(buffer),
}
str := *(*string)(unsafe.Pointer(&stringData))
mmp := make(map[string]int, 32)
mmp[str] = 3
mmp["abcd"] = 4
fmt.Println(mmp[str])
buffer[0] = 'a'
buffer[1] = 'b'
buffer[2] = 'c'
buffer[3] = 'd'
fmt.Println(mmp[str])
fmt.Println(mmp["test"])
fmt.Println(mmp["abcd"])
for k, v := range mmp {
fmt.Println(k, v)
}
}然后可以看看这个输出的结果,并留了一个为什么,不知道有木有朋友们思考到位了,咱们今天来合计合计这个问题。
map的结构分析
咱们初次接触GO的时候,已经被明确告知了,go语言中map是一个指针,必须要使用 make初始化之后才可以使用,咱们传递map的时候, 传递的也是map的这个指针,并不会复制map内部的数据内容,那么这个map的结构到底是如何的呢,这一块,在go源码的runtime\map.go中可以窥探一二,对于这一块的源码分析,网上也有比较详尽的资料可以查看。
不过由于Go在编译期间做了不少事情,比如编译的时候根据map类型来生成实际的map结构,填充里面的数据等,这一块实际上都是在编译期间做的,源码中并没有完整的包含这些,只是一个可以抽象出所有数据的一个外壳,所以,基础上比较薄弱,没有相应的知识的朋友们可能看起来比较糊涂,看完了,可能也是迷迷糊糊的,比如说,之前说过很多次的,go的字符串类型实际上是一个结构体,那么map得实际类型到底是个啥呢。
下面就来对map做一个一一对应的分解,并且将对应的数据结构,以及编译之后对应的数据类型一一地通过代码的形式分解出来。
map的实际类型
map的格式是指针,这是第一要素,那么我们首先第一步,直接先获取一下,map的内容大小,这个可以使用unsafe.Sizeof来获取到
前面我们说过string实际上是一个结构体如下
type StringData struct{
Data uintptr,
DataLen int,
}所以,我们获取到string的数据长度是16,那么咱们来试试map的
func main() {
var mp map[string]int
if unsafe.Sizeof(mp) == unsafe.Sizeof(uintptr(0)) {
pmp := unsafe.Pointer(&mp)
fmt.Println("mp指向的map地址:", *(*int)(pmp))
mp = make(map[string]int)
fmt.Println("mp初始化之后指向的map地址:", *(*int)(pmp))
} else {
fmt.Println(unsafe.Sizeof(mp))
}
}我们先判定,mp是不是就是保存的就是一个map的地址值,如果就是一个地址值,那么就应该是和uintptr的大小一致,然后咱们取得这个mp的实际地址值,如果没有初始化,那么这个地址肯定是空,也就是0,然后make之后,肯定就有一个地址值了,通过这一个代码,我们就可以直接确定,在go语言中,咱们写的map变量中存放的实际上就是map的地址指针。
在上面获取map的实际地址值上是有一个技巧的,就是是通过取地址的地址,然后推导出来的结果,从而拿到了map实际的地址值,因为go的编译器限定了,又不能直接像C,C++等之类的语言,直接做强制转换,所以,只有拿到地址之后,用地址来做强制转换,这个就是指针类的好处了,获取了内存结构之后,指针就不在乎数据形式了,你想他是什么都行,只是内存中的一块数据而已。
解构map解构hmap
结合runtime中的map.go,我们可以知道,实际上map的结构就是hmap,所以呢,实际上,咱们在go代码中写的map,就是*hmap的指针值。那么咱么来解构一下,上面也说了,go由于编译器的限制不能直接强制转换,所以,咱们只有先获取地址,然后通过地址来转,那么go代码中的map实际上就是 *hmap,所以第一步取地址&mp获取到的实际上就是地址的地址也就是 **hmap,所以,然后解指针一下就可以获取到实际的结构了,首先,咱们将go的runtime/map.go中的hmap相关的结构拷贝进来,然后改造改造试下
type mapextra struct {
// If both key and elem do not contain pointers and are inline, then we mark bucket
// type as containing no pointers. This avoids scanning such maps.
// However, bmap.overflow is a pointer. In order to keep overflow buckets
// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
// overflow and oldoverflow are only used if key and elem do not contain pointers.
// overflow contains overflow buckets for hmap.buckets.
// oldoverflow contains overflow buckets for hmap.oldbuckets.
// The indirection allows to store a pointer to the slice in hiter.
overflow *[]*bmap
oldoverflow *[]*bmap
// nextOverflow holds a pointer to a free overflow bucket.
nextOverflow *bmap
}
const (
// Maximum number of key/elem pairs a bucket can hold.
bucketCntBits = 3
bucketCnt = 1 << bucketCntBits
)
type tflag uint8
type nameOff int32 // offset to a name
type typeOff int32 // offset to an *rtype
type rtype struct {
size uintptr
ptrdata uintptr // number of bytes in the type that can contain pointers
hash uint32 // hash of type; avoids computation in hash tables
tflag tflag // extra type information flags
align uint8 // alignment of variable with this type
fieldAlign uint8 // alignment of struct field with this type
kind uint8 // enumeration for C
// function for comparing objects of this type
// (ptr to object A, ptr to object B) -> ==?
equal func(unsafe.Pointer, unsafe.Pointer) bool
gcdata *byte // garbage collection data
str nameOff // string form
ptrToThis typeOff // type for pointer to this type, may be zero
}
type mapType struct {
rtype
key *rtype // map key type
elem *rtype // map element (value) type
bucket *rtype // internal bucket structure
// function for hashing keys (ptr to key, seed) -> hash
hasher func(unsafe.Pointer, uintptr) uintptr
keysize uint8 // size of key slot
valuesize uint8 // size of value slot
bucketsize uint16 // size of bucket
flags uint32
}
type emptyInterface struct {
typ *rtype
word unsafe.Pointer
}
// PtrSize is the size of a pointer in bytes - unsafe.Sizeof(uintptr(0)) but as an ideal constant.
// It is also the size of the machine's native word size (that is, 4 on 32-bit systems, 8 on 64-bit).
const PtrSize = 4 << (^uintptr(0) >> 63)
// bucketShift returns 1<<b, optimized for code generation.
func bucketShift(b uint8) uintptr {
// Masking the shift amount allows overflow checks to be elided.
return uintptr(1) << (b & (PtrSize*8 - 1))
}
// bucketMask returns 1<<b - 1, optimized for code generation.
func bucketMask(b uint8) uintptr {
return bucketShift(b) - 1
}
// A bucket for a Go map.
type bmap struct {
// tophash generally contains the top byte of the hash value
// for each key in this bucket. If tophash[0] < minTopHash,
// tophash[0] is a bucket evacuation state instead.
tophash [bucketCnt]uint8
//这下面是动态结构,是编译期间根据KV类型动态生成的,这里测试使用string类型
keys [8]string
values [8]string
overflow uintptr
}
type hmap struct {
// Note: the format of the hmap is also encoded in cmd/compile/internal/reflectdata/reflect.go.
// Make sure this stays in sync with the compiler's definition.
count int // # live cells == size of map. Must be first (used by len() builtin)
flags uint8
B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
hash0 uint32 // hash seed
buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated)
extra *mapextra // optional fields
}
func main() {
mp := make(map[string]string, 32)
mp["tt"] = "tt"
mp["tt1"] = "551"
fmt.Println(unsafe.Sizeof(mp))
var hmp *hmap
hmp = *(**hmap)(unsafe.Pointer(&mp))
fmt.Println("map的个数为:", hmp.count)
}这里面改造的地方,只是在bmap结构中,将我们需要的类型补齐了,其他的没怎么变动
map的数据存储结构以及map的类型结构
map的本质实际上是一个哈希表,而对应的key不同,哈希函数肯定不同,同时,哈希表中存储的key,value的结构肯定也是动态的,但是runtime的map.go中只是给了一个通用的元素存储就结构bmap,而大家可以看到我上面的代码key是string,value也是string,所以在runtime/map.go的bmp的结构的基础上加上了keys [8]string和values [8]string以及overflow uintptr几个结构,这就说明了实际上这一块数据内容是在编译期间动态填充进去的,详细的内容,不细说了,网上有对应的说明,只标记一点,如果是别的类型,则这里对应的就是别的数据类型,同时针对每一个map结构,其都有一个mapType结构,记录了这个哈希表的类型结构
type mapType struct {
rtype
key *rtype // map key type
elem *rtype // map element (value) type
bucket *rtype // internal bucket structure
// function for hashing keys (ptr to key, seed) -> hash
hasher func(unsafe.Pointer, uintptr) uintptr
keysize uint8 // size of key slot
valuesize uint8 // size of value slot
bucketsize uint16 // size of bucket
flags uint32
}这个结构中就记录了key类型,元素类型,以及哈希函数以及key大小,value大小,哈希桶大小等
查询方式
这一块,基本上就是是对 key 进行 hash 计算,计算后用 low bits 和高 8 位 hash 找到对应哈希桶的位置,然后再去桶中查找,这一块map.go中有,可以直接将相关代码搬出来,就行了,这里主要的代码要素是要找到这个key计算的哈希函数,而哈希函数在mapType中记录着,所以,最主要的就是找到map对应的mapType,给一个最简单的办法哈,就是用interface做一个中转,然后通过interface获取结构类型就可以搞定了,咱们可以写一个简单的查询某个key的值得代码如下
func main() {
mp := make(map[string]string, 32)
mp["tt"] = "tt"
mp["tt1"] = "551"
fmt.Println(unsafe.Sizeof(mp))
var hmp *hmap
hmp = *(**hmap)(unsafe.Pointer(&mp))
fmt.Println("map的个数为:", hmp.count)
//通过interface获取mapType结构,然后获取到他的hash函数
var mpInterface interface{}
mpInterface = mp
eface := *(*emptyInterface)(unsafe.Pointer(&mpInterface))
mpType := (*mapType)(unsafe.Pointer(eface.typ))
fmt.Println("桶大小:", mpType.bucketsize)
key := "tt"
keyHash := mpType.hasher(unsafe.Pointer(&key), uintptr(hmp.hash0))
m := bucketMask(hmp.B)
bucketPointer := (*bmap)(unsafe.Pointer(uintptr(hmp.buckets) + (keyHash&m)*uintptr(mpType.bucketsize)))
if bucketPointer != nil {
//找到了桶了,直接从桶中查找
for i := range bucketPointer.keys {
if bucketPointer.keys[i] == key {
fmt.Println("找到了key=", key, "的值为:", bucketPointer.values[i])
break
}
}
} else {
//没有找到对应的桶,就从oldbuckets查找
}
}破题
通过上面这一系列的对应拆解,咱们再来看看最开始的那个问题是为啥子
- 首先,存入到map的时候,实际上会先计算出一个key的hash值
- 通过计算的哈希值,然后找到对应的哈希桶
- 将键值数据存入到哈希桶中去
而如果咱们将已经存入了哈希表中的某个字符串key的地址的数据值改了,而此时key并不知道他的值改了,所以此时这个键值的位置不会变动,依然是在原先那个哈希桶。那么如果这个时候使用原来的字符串key访问,此时hash计算出来的结果和原结果一致,所以能找到对应的哈希桶,但是找到了哈希桶之后,比对哈希桶中的元素的key的时候,无法匹配,所以此时就找不到了。那么如果使用改变后的字符串key去访问map,此时如果计算出来的哈希值然后找到的哈希桶和原始哈希桶相同,那么就能够找到这个新值,如果计算出来的哈希桶和原始哈希桶不同,那么就肯定找不到这个值了。于是破题得证
附加
有网友,说最好加上一个能定位到同一个哈希桶内部查找到的修改实现方式,所以,就将代码调整了一下,加上了一个哈希碰撞的调整
func main() {
mp := make(map[string]string, 32)
mp["tt"] = "tt"
mp["tt1"] = "551"
fmt.Println(unsafe.Sizeof(mp))
var hmp *hmap
hmp = *(**hmap)(unsafe.Pointer(&mp))
fmt.Println("map的个数为:", hmp.count)
//通过interface获取mapType结构,然后获取到他的hash函数
var mpInterface interface{}
mpInterface = mp
eface := *(*emptyInterface)(unsafe.Pointer(&mpInterface))
mpType := (*mapType)(unsafe.Pointer(eface.typ))
fmt.Println("桶大小:", mpType.bucketsize)
key := "tt"
keyHash := mpType.hasher(unsafe.Pointer(&key), uintptr(hmp.hash0))
m := bucketMask(hmp.B)
bucketPointer := (*bmap)(unsafe.Pointer(uintptr(hmp.buckets) + (keyHash&m)*uintptr(mpType.bucketsize)))
if bucketPointer != nil {
//找到了桶了,直接从桶中查找
for i := range bucketPointer.keys {
if bucketPointer.keys[i] == key {
fmt.Println("找到了key=", key, "的值为:", bucketPointer.values[i])
break
}
}
} else {
//没有找到对应的桶,就从oldbuckets查找
}
//下面来搞一个可以找到的
buffer := []byte("test")
stringData := reflect.StringHeader{
Data: uintptr(unsafe.Pointer(&buffer[0])),
Len: len(buffer),
}
str := *(*string)(unsafe.Pointer(&stringData))
mp[str] = str
fmt.Println("原始key=" + str + ",value=" + mp[str])
chars := []byte("abcdefghijklmnobjqrstuvwxyz")
keyHash = mpType.hasher(unsafe.Pointer(&str), uintptr(hmp.hash0))
bucketIndex := keyHash & m
top := tophash(keyHash)
for {
buffer[0] = chars[rand.Intn(len(chars))]
buffer[1] = chars[rand.Intn(len(chars))]
buffer[2] = chars[rand.Intn(len(chars))]
buffer[3] = chars[rand.Intn(len(chars))]
newHash := mpType.hasher(unsafe.Pointer(&str), uintptr(hmp.hash0))
if newHash&m == bucketIndex && tophash(newHash) == top {
fmt.Println("碰撞到一个匹配到同一个哈希桶的key:", str)
break
}
}
keyHash = mpType.hasher(unsafe.Pointer(&str), uintptr(hmp.hash0))
bucketPointer = (*bmap)(unsafe.Pointer(uintptr(hmp.buckets) + (keyHash&m)*uintptr(mpType.bucketsize)))
if bucketPointer != nil {
//找到了桶了,直接从桶中查找
for i := range bucketPointer.keys {
if bucketPointer.keys[i] == str {
fmt.Println("通过自己实现的匹配模式,找到了key=", str, "的值为:", bucketPointer.values[i])
break
}
}
} else {
//没有找到对应的桶,就从oldbuckets查找
}
fmt.Println("碰撞到的匹配的key=" + str + ",value=" + mp[str])
}此时就行了。
相关推荐
- 如何设计一个优秀的电子商务产品详情页
-
加入人人都是产品经理【起点学院】产品经理实战训练营,BAT产品总监手把手带你学产品电子商务网站的产品详情页面无疑是设计师和开发人员关注的最重要的网页之一。产品详情页面是客户作出“加入购物车”决定的页面...
- 怎么在JS中使用Ajax进行异步请求?
-
大家好,今天我来分享一项JavaScript的实战技巧,即如何在JS中使用Ajax进行异步请求,让你的网页速度瞬间提升。Ajax是一种在不刷新整个网页的情况下与服务器进行数据交互的技术,可以实现异步加...
- 中小企业如何组建,管理团队_中小企业应当如何开展组织结构设计变革
-
前言写了太多关于产品的东西觉得应该换换口味.从码农到架构师,从前端到平面再到UI、UE,最后走向了产品这条不归路,其实以前一直再给你们讲.产品经理跟项目经理区别没有特别大,两个岗位之间有很...
- 前端监控 SDK 开发分享_前端监控系统 开源
-
一、前言随着前端的发展和被重视,慢慢的行业内对于前端监控系统的重视程度也在增加。这里不对为什么需要监控再做解释。那我们先直接说说需求。对于中小型公司来说,可以直接使用三方的监控,比如自己搭建一套免费的...
- Ajax 会被 fetch 取代吗?Axios 怎么办?
-
大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发!今天给大家带来的主题是ajax、fetch...
- 前端面试题《AJAX》_前端面试ajax考点汇总
-
1.什么是ajax?ajax作用是什么?AJAX=异步JavaScript和XML。AJAX是一种用于创建快速动态网页的技术。通过在后台与服务器进行少量数据交换,AJAX可以使网页实...
- Ajax 详细介绍_ajax
-
1、ajax是什么?asynchronousjavascriptandxml:异步的javascript和xml。ajax是用来改善用户体验的一种技术,其本质是利用浏览器内置的一个特殊的...
- 6款可替代dreamweaver的工具_替代powerdesigner的工具
-
dreamweaver对一个web前端工作者来说,再熟悉不过了,像我07年接触web前端开发就是用的dreamweaver,一直用到现在,身边的朋友有跟我推荐过各种更好用的可替代dreamweaver...
- 我敢保证,全网没有再比这更详细的Java知识点总结了,送你啊
-
接下来你看到的将是全网最详细的Java知识点总结,全文分为三大部分:Java基础、Java框架、Java+云数据小编将为大家仔细讲解每大部分里面的详细知识点,别眨眼,从小白到大佬、零基础到精通,你绝...
- 福斯《死侍》发布新剧照 "小贱贱"韦德被改造前造型曝光
-
时光网讯福斯出品的科幻片《死侍》今天发布新剧照,其中一张是较为罕见的死侍在被改造之前的剧照,其余两张剧照都是死侍在执行任务中的状态。据外媒推测,片方此时发布剧照,预计是为了给不久之后影片发布首款正式预...
- 2021年超详细的java学习路线总结—纯干货分享
-
本文整理了java开发的学习路线和相关的学习资源,非常适合零基础入门java的同学,希望大家在学习的时候,能够节省时间。纯干货,良心推荐!第一阶段:Java基础重点知识点:数据类型、核心语法、面向对象...
- 不用海淘,真黑五来到你身边:亚马逊15件热卖爆款推荐!
-
Fujifilm富士instaxMini8小黄人拍立得相机(黄色/蓝色)扫二维码进入购物页面黑五是入手一个轻巧可爱的拍立得相机的好时机,此款是mini8的小黄人特别版,除了颜色涂装成小黄人...
- 2025 年 Python 爬虫四大前沿技术:从异步到 AI
-
作为互联网大厂的后端Python爬虫开发,你是否也曾遇到过这些痛点:面对海量目标URL,单线程爬虫爬取一周还没完成任务;动态渲染的SPA页面,requests库返回的全是空白代码;好不容易...
- 最贱超级英雄《死侍》来了!_死侍超燃
-
死侍Deadpool(2016)导演:蒂姆·米勒编剧:略特·里斯/保罗·沃尼克主演:瑞恩·雷诺兹/莫蕾娜·巴卡林/吉娜·卡拉诺/艾德·斯克林/T·J·米勒类型:动作/...
- 停止javascript的ajax请求,取消axios请求,取消reactfetch请求
-
一、Ajax原生里可以通过XMLHttpRequest对象上的abort方法来中断ajax。注意abort方法不能阻止向服务器发送请求,只能停止当前ajax请求。停止javascript的ajax请求...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 简介 (30)
- HTML 响应式设计 (31)
- HTML URL 编码 (32)
- HTML Web 服务器 (31)
- HTML 表单属性 (32)
- HTML 音频 (31)
- HTML5 支持 (33)
- HTML API (36)
- HTML 总结 (32)
- HTML 全局属性 (32)
- HTML 事件 (31)
- HTML 画布 (32)
- HTTP 方法 (30)
- 键盘快捷键 (30)
- CSS 语法 (35)
- CSS 轮廓宽度 (31)
- CSS 谷歌字体 (33)
- CSS 链接 (31)
- CSS 定位 (31)
- CSS 图片库 (32)
- CSS 图像精灵 (31)
- SVG 文本 (32)
- 时钟启动 (33)
- HTML 游戏 (34)
- JS Loop For (32)
