百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

图解实例讲解JavaScript算法,让你彻底搞懂

myzbx 2025-01-05 18:59 17 浏览

你好程序员,我们大多数人都害怕算法,并且从未开始学习它。但我们不应该害怕它。算法只是解决问题的步骤。

今天让我们以简单和说明性的方式介绍主要算法。

不要试图记住它们,算法更多的是解决问题。所以,坐下来用纸和笔。目录中的术语可能看起来很吓人,但只要和我在一起,我保证会以尽可能简单的方式解释所有内容。

目 录


  • 大 O 表示法
    • 理解大 O 符号
  • 算法
    • 什么是算法,为什么要关心?
    • 递归
    • 线性搜索算法
    • 二进制搜索算法
    • 朴素搜索算法
    • KMP算法
    • 冒泡排序
    • 合并排序
    • 快速排序
    • 基数排序

理解大 O 符号

Big O Notation 是一种表示算法时间和空间复杂度的方法。

  • 时间复杂度:算法完成执行所花费的时间。
  • 空间复杂度:算法占用的内存。

表示算法时间复杂度的表达式(符号)很少。

  • O(1):常数时间复杂度。这是理想情况。
  • O(log n):对数时间复杂度。如果`log(n) = x`那么它与`10^x`
  • O(n):线性时间复杂度。时间随着输入的数量呈线性增加。例如,如果一个输入需要 1 毫秒,则 4 个输入将花费 4 毫秒来执行算法。
  • O(n^2):二次时间复杂度。这主要发生在嵌套循环的情况下。
  • O(n!):阶乘时间复杂度。这是最坏的情况,应该避免。

您应该尝试编写您的算法,使其可以用前 3 个符号表示。最后两个应尽可能避免。



您希望尽可能地降低复杂性,最好避免超过 O(n) 的复杂性。

在本文的后续部分中,您将看到每种表示法的示例。现在,这就是您需要知道的全部内容。

算法

什么是算法,为什么要关心?

解决问题的方法,或者我们可以说解决问题的步骤、过程或规则集被称为算法。

例如:用于查找与搜索字符串相关的数据的搜索引擎算法。

作为一名程序员,您会遇到许多需要使用这些算法解决的问题。因此,如果您已经了解它们会更好。

递归

调用自身的函数是递归的。将其视为循环的替代方案。

function recursiveFn() {
   console.log("This is a recursive function");
   recursiveFn();
}

recursiveFn();

在上面的代码片段中,请看第 3 行recursiveFnrecursiveFn 本身中被调用。正如我之前提到的,递归是循环的替代方法。

那么,这个函数到底要运行多少次呢?

好吧,这将创建一个无限循环,因为在任何时候都无法阻止它。

假设我们只需要运行循环 10 次。在第 11 次迭代函数应该返回。这将停止循环。

let count = 1;
function recursiveFn() {
   console.log(`Recursive ${count}`);
   if (count === 10) return;
   count++;
   recursiveFn();
}

recursiveFn();

在上面的代码片段中,第 4 行返回并在计数为 10 时停止循环。

现在让我们看一个更现实的例子。我们的任务是从给定的数组中返回奇数数组。这可以通过多种方式实现,包括 for-loopArray.filter 方法等

但是为了展示递归的使用,我将使用 helperRecursive 函数。

function oddArray(arr) {
   let result = [];
   function helperRecursiveFn(arr) {
       if(arr.length === 0) {
           return; // 1
      } else if(arr[0] % 2 !== 0) {
           result.push(arr[0]); // 2
      }
       helperRecursiveFn(arr.slice(1)); // 3
  }
   helperRecursiveFn(arr);
   return result;
}

oddArray([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
// OutPut -> [1, 3, 5, 7, 9]

这里的递归函数是helperRecursiveFn

例如:第一次 helperRecursiveFn 将被调用[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]。下次它将被调用,[2, 3, 4, 5, 6, 7, 8, 9, 10]依此类推,直到数组长度为 0。

线性搜索算法

线性搜索算法非常简单。假设您需要查找给定数组中是否存在某个数字。

您将运行一个简单的 for 循环并检查每个元素,直到找到您要查找的元素。

const array = [3, 8, 12, 6, 10, 2];

// Find 10 in the given array.
function checkForN(arr, n) {
   for(let i = 0; i < array.length; i++) {
       if (n === array[i]) {
           return `${true} ${n} exists at index ${i}`;
      }
  }

 return `${false} ${n} does not exist in the given array.`;
}

checkForN(array, 10);

这就是线性搜索算法。您以线性方式逐一搜索数组中的每个元素。

线性搜索算法的时间复杂度

只有一个 for 循环会运行 n 次。其中 n(在最坏的情况下)是给定数组的长度。这里的迭代次数(在最坏的情况下)与输入(长度数组)成正比。

因此,线性搜索算法的时间复杂度是线性时间复杂度:O(n)。

二进制搜索算法

在线性搜索中,您一次可以消除一个元素。但是使用二进制搜索算法,您可以一次消除多个元素。这就是二分查找比线性查找快的原因。

这里要注意的一点是,二分查找只对排序好的数组有效。

该算法遵循分而治之的方法。让我们在 [2, 3, 6, 8, 10, 12] 中找到 8 的索引。

第 1 步:找到数组的中间索引。

const array = [2, 3, 6, 8, 10, 12];
let firstIndex = 0;
let lastIndex = array.length - 1;
let middleIndex = Math.floor((firstIndex + lastIndex) / 2); // middleIndex -> 2

第 2 步:检查middleIndex元素是否 > 8。如果是,则说明 8 在middleIndex的左侧。因此,将lastIndex更改为 (middleIndex - 1)。

第 3 步:否则如果 middleIndex元素 < 8。这意味着 8 在middleIndex的右边。因此,将firstIndex更改为 (middleIndex+ 1);

if (array[middleIndex] > 8) {
   lastIndex = middleIndex - 1;
} else {
   firstIndex = middleIndex + 1;
}

第 4 步:每次迭代都会根据新的firstIndexlastIndex 再次设置middleIndex

让我们以代码格式一起查看所有这些步骤。

function binarySearch(array, element) {
   let firstIndex = 0;
   let lastIndex = array.length - 1;
   let middleIndex = Math.floor((firstIndex + lastIndex) / 2);

   while (array[middleIndex] !== element && firstIndex <= lastIndex) {
       if(array[middleIndex] > element) {
               lastIndex = middleIndex - 1;
      }else {
               firstIndex = middleIndex + 1;
      }
       middleIndex = Math.floor((firstIndex + lastIndex) / 2);
  }
   return array[middleIndex] === element ? middleIndex : -1;
}

const array = [2, 3, 6, 8, 10, 12];
binarySearch(array, 8); // OutPut -> 3

这是上述代码的可视化表示。

步骤1


firstIndex = middleIndex + 1;

第2步


lastIndex = middleIndex - 1;

步骤:3

array[middleIndex] === 8 // Found It

二分查找的时间复杂度

只有一个 while 循环会运行 n 次。但是这里的迭代次数不依赖于输入(数组长度)。

因此,二进制搜索算法的时间复杂度是对数时间复杂度:O(log n)。你可以检查 O 符号图。O(log n) 比 O(n) 快。

朴素搜索算法

朴素搜索算法用于查找字符串是否包含给定的子字符串。例如,检查“helloworld”是否包含子字符串“owo”。

  1. 首先循环主字符串(“helloworld”)。
  2. 在子字符串 ("owo") 上运行嵌套循环。
  3. 如果字符不匹配,则中断内部循环,否则继续循环。
  4. 如果内循环完成并匹配,则返回 true 否则继续外循环。


这是一个视觉表示。

这是代码中的实现。

function naiveSearch(mainStr, subStr) {
   if (subStr.length > mainStr.length) return false;

   for(let i = 0; i < mainStr.length; i++) {
      for(let j = 0; j < subStr.length; j++) {
           if(mainStr[i + j] !== subStr[j]) break;
           if(j === subStr.length - 1) return true;
      }
  }
   return false;
}

现在,让我们试着理解上面的代码。

  • 在第 2 行,如果 subString长度大于 mainString长度,则返回false
  • 在第 4 行,开始在mainString 上循环。
  • 在第 5 行,在subString上开始嵌套循环。
  • 在第 6 行,如果没有找到匹配项,则中断内循环,并继续进行外循环的下一次迭代。
  • 在第 7 行,在内循环的最后一次迭代中返回true


朴素搜索的时间复杂度

循环中有循环(嵌套循环)。两个循环都运行 n 次。因此,朴素搜索算法的时间复杂度是 (n * n) Quadratic Time Complexity: O(n^2)。

如上文所述,如果可能,应避免超过 O(n) 的任何时间复杂度。在下一个算法中,我们将看到一种时间复杂度更低的更好方法。

KMP算法

KMP算法是一种模式识别算法,理解起来有点费劲。好的,让我们尝试查找字符串“abcabcabspl”是否包含子字符串“abcabs”。

如果我们尝试使用Naive Search Algo来解决这个问题,它将匹配前 5 个字符但不匹配第 6 个字符。我们将不得不从下一次迭代重新开始,我们将失去上一次迭代的所有进展。


所以,为了保存我们的进度并使用它,我们必须使用一个叫做 LPS 表的东西。现在在我们匹配的字符串“abcab”中,我们将找到最长的相同前缀和后缀。

在这里,在我们的字符串“abcab”中,“ab”是最长的相同前缀和后缀。


现在,我们将从索引 5(对于主字符串)开始下一次搜索迭代。我们从之前的迭代中保存了两个字符。


为了找出前缀、后缀以及从哪里开始下一次迭代,我们使用 LPS 表。

我们的子串(“abcabs”)的 LPS 是“0 0 0 1 2 0”。

下面是如何计算 LPS 表。

function calculateLpsTable(subStr) {
   let i = 1;
   let j = 0;
   let lps = new Array(subStr.length).fill(0);

   while(i < subStr.length) {
       if(subStr[i] === subStr[j]) {
           lps[i] = j + 1;
           i += 1;
           j += 1;
      } else {
           if(j !== 0) {
               j = lps[j - 1];
          } else {
               i += 1;
          }
      }
  }
   return lps;
}

下面是使用 LPS 表的代码实现。

function searchSubString(string, subString) {
   let strLength = string.length;
   let subStrLength = subString.length;
   const lps = calculateLpsTable(subString);

   let i = 0;
   let j = 0;

   while(i < strLength) {
       if (string[i] === subString[j]) {
           i += 1;
           j += 1;
      } else {
           if (j !== 0) {
               j = lps[j - 1];
          } else {
               i += 1;
          }
      }
       if (j === subStrLength) return true;
  }

   return false;
}

KMP算法的时间复杂度

只有一个循环运行 n 次。因此,KMP 算法的时间复杂度是线性时间复杂度:O(n)。

请注意,与 Naive 搜索算法相比,时间复杂度是如何提高的。

冒泡排序算法

排序意味着按升序或降序重新排列数据。冒泡排序是众多排序算法中的一种。

在冒泡排序算法中,我们通过将每个数字与前一个数字进行比较,将较大的数字交换到末尾。这是一个视觉表示。

冒泡排序代码实现。

function bubbleSort(array) {
  let isSwapped;

  for(let i = array.length; i > 0; i--) {
      isSwapped = false;

      for(let j = 0; j < i - 1; j++) {
          if(array[j] > array[j + 1]) {
              [array[j], array[j+1]] = [array[j+1], array[j]];
              isSwapped = true;
          }
      }

      if(!isSwapped) {
          break;
      }
  }
  return array;
}

让我们试着理解上面的代码。

  • 从带有变量 i 的数组末尾开始循环。
  • 以变量 j 开始内循环,直到 (i - 1)。
  • 如果 array[j] > array[j + 1] 交换它们。
  • 返回排序数组。

冒泡排序算法的时间复杂度

有一个嵌套循环,两个循环都运行 n 次,因此该算法的时间复杂度为 (n * n) 即二次时间复杂度 O(n^2)。

合并排序算法

合并排序算法遵循分而治之的方法。它是两件事的结合——合并和排序。

在这个算法中,我们首先将主数组分成多个单独的排序数组。


然后我们将单独排序的元素合并到最终数组中。

让我们看看代码中的实现。

合并排序数组

function mergeSortedArray(array1, array2) {
   let result = [];
   let i = 0;
   let j = 0;

   while(i < array1.length && j < array2.length) {
       if(array1[i] < array2[j]) {
           result.push(array1[i]);
           i++;
      } else {
           result.push(array2[j]);
           j++;
      }
  }

   while (i < array1.length) {
       result.push(array1[i]);
       i++;
  }

   while (j < array2.length) {
       result.push(array2[j]);
       j++;
  }

   return result;
}

上面的代码将两个排序数组合并为一个新的排序数组。

合并排序算法

function mergeSortedAlgo(array) {
   if(array.length <= 1) return array;

   let midPoint = Math.floor(array.length / 2);
   let leftArray = mergeSortedAlgo(array.slice(0, midPoint));
   let rightArray = mergeSortedAlgo(array.slice(midPoint));

   return mergeSortedArray(leftArray, rightArray);
}

上述算法使用递归将数组划分为多个单元素数组。

归并排序算法的时间复杂度

让我们尝试计算归并排序算法的时间复杂度。因此,以我们之前的示例([6, 3, 5, 2])为例,将其划分为多个单元素数组需要 2 个步骤。

It took 2 steps to divide an array of length 4 - (2^2)

现在,如果我们将数组 (8) 的长度加倍,则需要 3 个步骤来划分 - (2^3)。意味着将数组长度加倍并没有使步骤加倍。

因此合并排序算法的时间复杂度是对数时间复杂度 O(log n)。

快速排序算法

快速排序是最快的排序算法之一。在快速排序中,我们选择一个称为 pivot 的元素,我们会将所有元素(小于 pivot)移动到 pivot 的左侧。

视觉表示。

我们将对枢轴左侧和右侧的数组重复此过程,直到对数组进行排序。

代码实现:枢轴效用

function pivotUtility(array, start=0, end=array.length - 1) {
   let pivotIndex = start;
   let pivot = array[start];

   for(let i = start + 1; i < array.length; i++) {
       if(pivot > array[i]) {
           pivotIndex++;
          [array[pivotIndex], array[i]] = [array[i], array[pivotIndex]];
      }  
  }

  [array[pivotIndex], array[start]] = [array[start], array[pivotIndex]];
   return pivotIndex;
}

上面的代码标识了 pivot 的正确位置并返回该位置索引。

function quickSort(array, left=0, right=array.length-1) {
   if (left < right) {
       let pivotIndex = pivotUtility(array, left, right);
       quickSort(array, left, pivotIndex - 1);
       quickSort(array, pivotIndex + 1, right);
  }

   return array;
}

上面的代码使用递归将枢轴移动到左右枢轴数组的正确位置。

快速排序算法的时间复杂度

最佳情况:对数时间复杂度 - O(n log n)

平均情况:对数时间复杂度 - O(n log n)

最坏情况:O(n^2)

基数排序算法


基数排序也称为桶排序算法。

这里首先我们构建 10 个索引桶,从 0 到 9。然后我们取每个数字中的最后一个字符,并将该数字推送到相应的桶中。检索新顺序并重复每个数字的倒数第二个字符。

不断重复上述过程,直到数组排序完毕。

在代码中实现。

// Count Digits: 下面的代码计算给定元素的位数。

function countDigits(number) {
   if(number === 0) return 1;

   return Math.floor(Math.log10(Math.abs(number))) + 1;
}

// 获取数字:下面的代码从右边给出索引 i 处的数字。

function getDigit(number, index) {
   const stringNumber = Math.abs(number).toString();
   const currentIndex = stringNumber.length - 1 - index;

   return stringNumber[currentIndex] ? parseInt(stringNumber[currentIndex]) : 0;
}

// MaxDigit:下面的代码片段找到了最大位数的数字。

function maxDigit(array) {
   let maxNumber = 0;

   for(let i = 0; i < array.length; i++) {
       maxNumber = Math.max(maxNumber, countDigits(array[i]));
  }

   return maxNumber;
}

// Radix 算法:利用上述所有代码段对数组进行排序。

function radixSort(array) {
   let maxDigitCount = maxDigits(array);

   for(let i = 0; i < maxDigitCount; i++) {
       let digitBucket = Array.from({length: 10}, () => []);

       for(let j = 0; j < array.length; j++) {
           let lastDigit = getDigit(array[j], i);
           digitBucket[lastDigit].push(array[j]);
      }

       array = [].concat(...digitBucket);
  }

   return array;
}

基数排序算法的时间复杂度

有一个嵌套的for循环,我们知道嵌套的for循环的时间复杂度是O(n^2)。但是在这种情况下,for 循环都不会运行 n 次。

外循环运行 k (maxDigitCount) 次,内循环运行 m (数组长度) 次。因此,基数排序的时间复杂度为 O(kxm) - (其中 kxm = n)线性时间复杂度 O(n)


算法和计算机原理是如今在企业面试和进入互联网大厂必要的技能,如果你正在学前端,你也可以来咨询我们,我们的JavaScript系统课程中针对算法和基础原理也有详细的视频简介!!

Web 前端高级工程师系统课 | arry老师的博客-艾编程

相关推荐

Django零基础速成指南:快速打造带用户系统的博客平台

#python##服务器##API##编程##学习#不是所有教程都值得你花时间!这篇实战指南将用5分钟带你解锁Django核心技能,手把手教你从零搭建一个具备用户注册登录、文章管理功能的完整...

iOS 17.0 Bootstrap 1.2.9 半越狱来啦!更新两点

这款Bootstrap半越狱工具终于更新,离上一次更新已相隔很久,现在推出1.2.9版本,主要为内置两点功能进行更新,也是提升半越狱的稳定性。如果你正在使用这款半越狱工具的,建议你更新。注意!...

iOS 16.x Bootstrap 1.2.3 发布,支持运行清理工具

本文主要讲Bootstrap半越狱工具更新相关内容。如果你是iOS16.0至16.6.1和17.0系统的,想体验半越狱的果粉,请继续往下看。--知识点科普--Bootstrap...

SpringBoot整合工作流引擎Acticiti系统,适用于ERP、OA系统

今日推荐:SpringBoot整合工作流引擎Acticiti的源码推荐理由:1、SpringBoot整合工作流引擎Acticiti系统2、实现了三级权限结构3、持久层使用了mybatis框架4、流程包...

SpringCloud自定义Bootstrap配置指南

在SpringCloud中自定义Bootstrap配置需要以下步骤,以确保在应用启动的早期阶段加载自定义配置:1.添加依赖(针对新版本SpringCloud)从SpringCloud2020...

Python使用Dash开发网页应用(三)(python网页开发教程)

PlotlyDash开发Web应用示例一个好的网页设计通常都需要编写css甚至js来定制前端内容,例如非常流行的bootstrap框架。我们既然想使用Dash来搭建web应用,很大的一个原因是不熟悉...

Oxygen XML Editor 27.1 中的新功能

OxygenXMLEditor27.1版是面向内容作者、开发者、合作者和出版商的行业领先工具包的增量版本。在27.1版本中,AIPositronAssistant得到了增强,包括用于...

【LLM-多模态】Mini-Gemini:挖掘多模态视觉语言模型的潜力

一、结论写在前面论文提出了Mini-Gemini,一个精简而强大的多模态VLM框架。Mini-Gemini的本质在于通过战略性框架设计、丰富的数据质量和扩展的功能范围,发掘VLM的潜在能力。其核心是补...

谐云课堂 | 一文详解分布式改造理论与实战

01微服务与分布式什么是分布式?首先,我们对上图提到的部分关键词进行讲解。单体,是指一个进程完成全部的后端处理;水平拆分,是同一个后端多环境部署,他们都处理相同的内容,使用反向代理来均衡负载,这种也叫...

基于Abaqus的手动挡换挡机构可靠性仿真

手动挡,也称手动变速器,英文全称为Manualtransmission,简称MT,即用手拨动换挡操纵总成才能改变变速器内的齿轮啮合位置,改变传动比,从而达到变速的目的。家用轿车主要采用软轴连接的换挡...

【pytorch】目标检测:彻底搞懂YOLOv5详解

YOLOv5是GlennJocher等人研发,它是Ultralytics公司的开源项目。YOLOv5根据参数量分为了n、s、m、l、x五种类型,其参数量依次上升,当然了其效果也是越来越好。从2020...

超实用!50个非常实用的PS快捷键命令大全分享

今天,给大家介绍50个非常实用的快捷键命令大全,大家伙都是设计师,关于软件使用那是越快越好啊。一、常用的热键组合1、图层混合模式快捷键:正常(Shift+Option+N),正片叠底(Shif...

Pohtoshop中深藏不露的小技巧(科目一考试技巧记忆口诀看完必过)

邢帅教育ps教程为大家总结了一些Pohtoshop中深藏不露的小技巧,可以帮助到大家在设计时减少不必要的麻烦,提高工作效率哦~~~1.设置网格线保持像素完美不在1:1分辨率下也能保持像素完美,可以...

Ganglia监控安装总结(监控安装工作总结)

一、ganglia简介:Ganglia是一个跨平台可扩展的,高性能计算系统下的分布式监控系统,如集群和网格。它是基于分层设计,它使用广泛的技术,如XML数据代表,便携数据传输,RRDtool用于数据...

谁说Adobe XD做不出好看的设计?那是你没搞懂这些功能

AdobeXD的美化栏具有将设计视图美化的功能,它能使界面设计和原型设计更漂亮、更吸引眼球。美化栏的7个功能包括竖线布局设计、横线布局设计、重复网格、图形大小和位置设置、响应式调整大小、文字美化以及...